基于光纤的组合导航系统 PA-GISO4D

一:产品简介

高精度组合导航PA-GISO4D由开环光纤陀螺与高精度石英扰性加表组合而成,将卫星定位与惯性测量相结合,推出的一款能够提供多种导航参数的全新组合导航产品。产品在卫星定位方面采用GPS/GLONASS方案(北斗/GNSS双模方案可选),在全球卫星定位系统GNSS的基础上可选择加入我国自主研发的北斗卫星定位系统,具有全天候、全球覆盖、高精度、快速省时高效率、应用广泛等优点。与此同时,针对卫星信号易受建筑物、山林等高大物体遮挡,造成卫星失锁或多路径影响定位精度,且运动载体机动过程中不易捕获和跟踪卫星信号等不足,XW-GI7660内置光纤陀螺和石英加速度计,支持外接里程计信息进行辅助,借助新一代精确标定技术和多传感器数据融合技术,大大提高了系统的可靠性、精确性和动态性,同时还可提供卫星导航所不能提供的航向、姿态等信息。

PA-GISO4D內置惯性测量单元、双GNSS(BD可选)定位定向单元与里程计接口,支持BD(可选)、GNSS双系统。系统组合输出系统方位角,更适用于交通测量、测绘使用;当卫星信号被遮挡后,系统进入惯导模式,凭借惯导和里程计信息,在一定的时间内仍可保持良好的测量精度。PA-GISO4D这一特性提供了比单独使用GNSS/BD(可选)或INS更精确、更可靠的解决方案。目前已成功应用于道路交通测量、驾校路考系统、航海、航空等众多领域。

二: 惯性器件指标

光纤 IMU 由三个单轴开环光纤陀螺仪及三个石英加速度计组合而成:

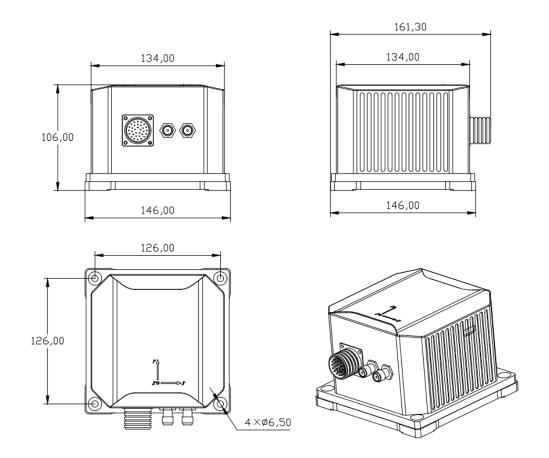
		光纤陀螺仪	加速度计	
пп	零偏稳定性	0.2°/h(1σ,10s 平滑考核)	50ug(1σ,10s 平滑考核)	
器	零偏重复性	0.1°/h (1 σ ,全温定温)	50ug(1σ, 全温定温)	
件指	标度非线性度	100ppm	100ppm	
标	分辨率	0.1°/h	5ug	
171	动态范围	-500° /s~+500° /s	-35g~+35g	

	初始对准时间	10s-60s(依据初始对准平台环境存在差异)		
	工作时间	大于 30min (一次上电连续工作)		
	自寻北性能	误差约 0.5°, 建议航向由外部基准赋初值		
	航向保持精度	0.5°/h (1 σ),纯惯性		
	姿态调平精度	0.05° (1σ),初始自对准		
	姿态保持精度	0.08°/h (1 σ),纯惯性		
	TE		水平: 1.5m (单点)	
_	卫星 辅助	1cm+1ppm (RTK)		
系		高程,5m(单点)		
统		测速仪	取决于测速仪精度(0.1%D-0.3%D)	
指	数据更新速率	100Hz/200Hz/400Hz(可调)		
标	波特率	115200 bps (默认)		
	供电电压	24VDC额定(10~32VDC)		
	额定功率	≤20W		
	环境温度	$-40^{\circ}\mathrm{C}^{\sim}$ $+65^{\circ}\mathrm{C}$		
	冲击耐受	100g, 3ms,		
	体积	$146 \mathrm{mm} \! imes \! 146 \mathrm{mm} \! imes \! 106 \mathrm{mm}$		
	重量	小于 2.0kg		

三:对外接口说明

1. 通信接口

对外接口用于给导航系统供电、定位定向信息输出,通信接口 RS232、RS422。


2. 电气接口

航插管脚	项目	定义	内容	备注
1		主备电源	24V DC	18∼36VDC
2	山 湖西		24V DC	
3	电源		PGND	
4			PGND	
5			232_TX	pagaga
6		PORT A (232)	232_RX	RS232 Debug
7			DGND	
18	OUTPUT		422_TX+	
19		PORT E (422)	422_TX-	RS422
20			422_RX+	
21			422_RX-	

36	DGND	DGND	
37	壳体地	GGND	

1.1. 导航系统结构设计

四:环境验证

4.1 高温试验

按 GJB 150.3A-2009《军用装备实验室环境试验方法 第 3 部分:高温试验》的相关规定。

高温储存: +70℃, 储存 48 小时;

高温工作: +70℃时保证指标, 保温 4h, 加电 2 小时后进行指标测试。

4.2 低温试验

按 GJB 150.4A-2009《军用装备实验室环境试验方法 第 4 部分: 低温试验》的相关规定。

低温储存: -55℃, 储存 24 小时;

低温工作: -50℃时保证指标, 保温 4h, 加电 2 小时后进行指标测试。

4.3 温度冲击试验

低温: -55℃;

高温: +70℃;

高低温保温时间: 4h;

温度转换时间: ≤1min;

次数:在每种条件下进行3次冲击。

4.4 振动试验

按 GJB 150. 16A-2009 《军用装备实验室环境试验方法第 16 部分振动试验》的有关规定进行。

(1) 功能试验

试验图谱按图 1, 取值按照表 2, 试验持续时间为沿相互垂直的三个轴向分别 1 小时(三轴向规定为: 装机状态的航向、垂向和侧向)。

(2) 耐久试验

条件同功能振动试验, 试验时间每轴向 4.8h。

(3) 试验条件

振动影响区域为尾传平台,振动条件参照尾传平台振动要求。

振动试验图谱见图 1。

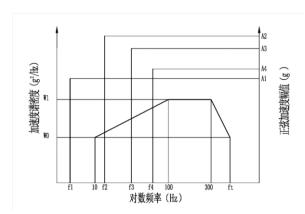


图 1 振动环境试验谱

表 2 试验量值表

/☆ 罕	Jē	#±+0+E=+ (2.41)		
位置	频率名称	频率(fi)	振动峰值 Ai (g)	随机振动(g2/Hz)
	主桨一阶通过频率	21.5	1.5	W0=0.002
	主桨二阶通过频率	43.0	1.0	W1=0.02
尾传平台	尾传水平轴转速频率	68.6	3.75	(ft=2000Hz)
	尾桨一阶通过频率	79.3	1.5	
	主桨一阶通过频率	21.5	2.25	

主桨二阶通过频率	43	1.5
主桨三阶通过频率	64.5	1.5

注: * GJB150.16A 规定的频率范围低频是从 10Hz 开始,为了方便 4.3Hz 的加载,可以在 4Hz~10Hz 之间施加一个振动量值很低的随机背景;如果受试验条件限制,频率范围无法 包括 4.3Hz,则允许以 5Hz 代替之,量值要求不变。

4.5 冲击试验

功能性能试验按 GJB150.18A-2009 《军用装备实验室环境试验方法冲击试验》的有关规定,模块的设计应能确保模块在下述冲击条件(见表 5)下,其结构、功能不受损坏:

表 5	功能性能冲击试验条件

冲击波形	峰值加速度 (g)	持续时间 (ms)	冲击方向	冲击次数
丘	20	11	产品三个轴向正	每方向3次共进行
后峰锯齿波	20	11	反方向	18次冲击

五:安装示意

◆ 使用产品来测量载体的三维运动情况,安装位置需靠近载体"中心",在载体静止时安装表面应该与地面平行,同时确保外壳上的"Y箭头方向"与"载体笔直向前移动时方向"保持一致。安装完成之后,最好在使用过程中不对安装进行改动。

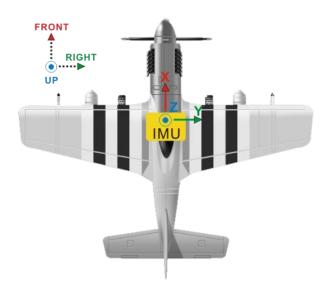


图 2. 组合导航在空基载体上的安装示意图

❖ 产品中包含三轴磁传感器,用来测量周围磁场强度,在物体静止且没有搜到 GPS 卫星时提供航向信息。如果用户在此种环境下需要航向信息,那么应尽 量使产品充分暴露于地球磁场,同时与干扰磁场相对隔绝。最好的方法是将 产品安装在任何一个钢铁容器的外面(例如车辆),并且尽可能远离磁场的 影响,同时进行磁场校准操作来补偿周围磁场干扰。

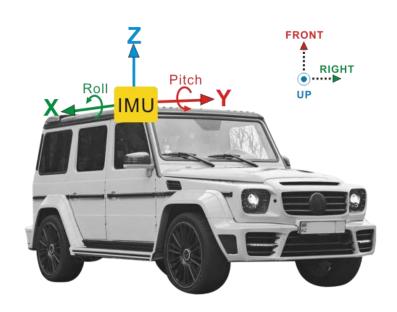


图 3. 组合导航在路基载体上的安装示意图

❖ 安装时,组合导航与天线的固定方式如下图所示,天线需安装在导航的垂直 正上方或沿运动方向固定在导航的水平正前方。

特别注意:

- 1. 为了达到更好的性能,建议上电静止两分钟后使用,尽量保证载体不振动。
 - 2. 产品每次安装完成以及磁场环境改变之后,用户进行磁场校准。

精致 • 精准 • 精通

西安精准测控有跟责任公司

Xi'an Precise Measurement & Control Co., Ltd

电话: 029-88814882 / 883 / 891 / 892 传真: 029-88814881

网址: www . siliconmems . com E-mail: admin @ siliconmems . com 地址: 西安市高新区科技二路65号清华科技园A区3层